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This essay reports results on optimal growth in a two-sector model with fixed coefficients,
irreversible investment and no discounting. Under normalization, the model can be
represented by two real numbers, but despite its deceptive simplicity, it admits rich
transition dynamics and apparent pathologies that seem to have been missed in earlier
work. From a methodological point of view, and in the light of recent work of Nishimura
and Yano, this essay can also be seen as a further rehabilitation of geometric methods as
an engine of analysis.
JEL Classification Numbers: D90, C62, O21.

1. Introduction

In a recent investigation of the “choice of technique” in a vintage-capital model originally
formulated by Robinson, Solow and Srinivasan (henceforth, the RSS model), and further
discussed by Okishio and Stiglitz,1 it was shown that a single technique played an increas-
ingly dominating and singular role in the long run, despite the availability of a multiplicity
of techniques; see Khan and Mitra (2003). In a world without discounting and under a
standing hypothesis on technological parameters, a single type of machine, one independ-
ent of the parameters of the felicity function, was produced and used in the long run; even
if a (well identified) class of types of machines were available, they were never replaced
but used until their stocks depreciated to zero; see (Khan and Mitra (2003), sections 3–5).
However, it was also shown that these results do not extend to the medium and the shortrun,
and even in an economy with two types of machines, with a single type being optimal in
the long run, both types were optimally produced and used in the first period. Whereas
sufficient conditions on the parameters of the technology were furnished to rule out this

* Preliminary and partial versions of this paper were presented on 29 August 2002 at EPGE, Fundaçáo Getulio
Vargas on 18 August 2003; at the Department of Economics and the Institute of Mathematical Sciences,
National University of Singapore on 3 February 2004; and at the International Conference in Trade and
Development in honor of Lionel McKenzie, Kyoto, Japan. It is a pleasure for the authors to acknowledge
the encouragement of Professors Sen, Solow and Srinivasan at early stages of this research, the support
of the Centre for a Livable Future at Johns Hopkins and the Centre for Analytic Economics at Cornell, and
the careful reading of an anonymous referee. Khan also thanks Äke Blomquist, Carl Chiarella (Discus-
sant at Kyoto), Minako Fujio, Ron Jones, Basant Kapur, Murray Kemp, Lionel McKenzie, Chris Metcalf,
Vilfredo Moldanado, Samuel Pessoa, Ashvin Rajan and Makoto Yano for stimulating conversation and
correspondence. This essay was conceived as a tribute to Ron Jones for his seventieth birthday—to the
authors: teacher, friend and also a geometer par excellence. 

1 In addition to the pioneering analyses of Robinson (1960, pp. 38–56), Solow (2000) and Srinivasan
(1962), see Okishio (1966), Bruno (1967), Stiglitz (1968, 1970, 1973b), Robinson (1969), Cass-Stiglitz
(1970) and Solow (2000). In Khan and Mitra (2003), an attempt is made to give some perspective to this
rich literature.
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phenomenon, the complete characterization of the transition dynamics was left open; see
(Khan and Mitra (2003), Section 8).

In this paper, we present a complete resolution of this problem for an economy with only
one type of machine and with a linear felicity function, remaining in a world with discrete
time and with zero discounting. In such an economy, there is no question as to the choice of
technique, and it is natural to ask whether, with all the simplifications—the model’s para-
meters are reduced to two real postive numbers—there is anything very much left to deter-
mine; the problem seems at first glance to have been simplified into a triviality. However,
even in this starkly simplified special case of the RSS model, and even of the standard two-
sector model, the results go against established intuitions in a way that is nothing short of
dramatic. A parameter ξ that seemed to play a peripheral role in the counterexamples presented
in (Khan and Mitra (2003), subsections 6.2 and 6.3) now attains a central role in the analysis;
what was seen as a possibility of periodic optimal programmes and of programmes giving
priority to the consumption sector as being “bad” in the sense of generating infinite
value-losses,2 now emerge as robust results under specific ranges of this parameter.

In the economy under consideration, a units of perfectly divisible labour are required
to produce a perfectly divisible machine with a depreciation rate of d. What is crucially
important for the transition dynamics is the maximal amount of incremental machines
that is available tomorrow with a unit stock of machines today (ξ equal to 1/a − (1 − d)).3

This constant parameter ξ can only take values greater than −1,4 and when it is unity, an
optimal programme consists of two-period cycles around a unique golden rule stock of
machines, with the amplitude of each cycle being different for different values of the initial
stock of machines lying in an identifiable interval. Outside this interval, there is conver-
gence in finite time to one of these cycles, but a convergence that is typically not monotonic.
However, what is especially interesting about this case is that the optimal programme is
not unique; there exists an interval of initial stocks in which the optimal policy is constituted
by a set of values rather than a singleton. This leads to an optimal policy correspondence
rather than to an optimal policy function. 

For other values of ξ, we can show the existence of an optimal policy function; in each
period, there is a unique value of the optimal amount of machines, and therefore of an
optimal level of consumption and of optimal (sectoral) labour allocation, as a function of
the amount of machines available in the previous period. We show that the optimal pro-
gramme converges to the golden rule stock, and in particular, for values of ξ greater than
unity, and for the initial stocks of machines lying in an interval between the golden rule
stock and unity,5 there is convergence in the very first period. For other values of ξ, how-
ever, convergence is again not necessarily of a monotonic type, and takes finite or infinite
time depending on the particular values of the initial stock of machines the economy is
endowed with. Thus, in several instances, Ramsey optimality requires over-building and
under-depreciating relative to the golden rule stock. In particular, the dynamic system
fails in a particularly sharp way the recent criterion of “history independence” proposed

2 Such programmes are advocated by Stiglitz as a consequence of his analysis in continuous time; see
Stiglitz (1968) and also Khan and Mitra (2003).

3 As we shall see below, the exogenous (and identical) amount of labour available to the economy in each
period is normalized to unity.

4 If ξ ≤ −1, d ≤ −(1/a), a contradiction to the positivity of a, given that 0 < d < 1.
5 As emphasized in footnote 3, labour has been normalized to be unity in each period.
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in Mitra and Nishimura (2001b). In any case, we give a complete (global) characterization
of the optimal programme. 

It is worth noting that even though the results appear surprising in terms of the volat-
ility of the optimal programmes when viewed against the backdrop of earlier work
that emphasized monotonic convergence,6 they seem tame in the light of more recent
work on chaotic dynamics two-sector models, both of the standard Srinivasan-Uzawa
type (see the papers collected in Benhabib (1992) and Majumdar et al. (2000)), and
those incorporating externalities and endogenous growth (see the JET Symposium
introduced in Mitra and Nishimura (2001a)). Our model, despite its simplicity, is a
bona fide two-sector model; robust methods are available in this literature which
allow one to construct two-sector models whose optimal programmes exhibit chaos
under its various definitions. It is these programmes that really merit the term “vola-
tile” and the results presented here can be read as emphasizing the lack of volatility
of the optimal programmes when there is no discounting and one of the sectors, the
investment sector, uses only one factor, namely labour.7 In this sense, our results are
in keeping with an early intuition of Lionel McKenzie’s that asymptotic theory for
optimal paths of capital accumulation is “rather fully developed” for the undis-
counted case, and more difficult for the discounted case; see McKenzie (1983).

Whereas the results presented in this paper obviously constitute its primary motivation,
an important secondary motivation is a rehabilitation of geometric methods—we give
them prominence as an engine of analysis rather than the somewhat subsidiary role that
they have played in the bulk of the literature as an instrument of illustration. We rely on
the basics of Euclidean geometry, as exposited for example in Herberg and Orleans
(1940) or Artmann (1999), and as such use techniques well-known to the ancient Greeks.
In keeping with Khan and Mitra (2003), we work with the Gale-McKenzie reduced form,
and combine a cobweb-like analysis with the period by period diagram especially prom-
inent in McKenzie’s work.8 In this move beyond calculus to a recourse to global methods,
we are very much in the tradition of the classical theory of international trade,9 and also
in tune with a similar move in economic dynamics pioneered by Nishimura and Yano. We
defer a detailed discussion of the Nishimura-Yano geometry to the sequel, and merely
observe here that our methods play an important initial role in allowing us to go beyond
general statements concerning transition dynamics to a detailed (global) characterization
of the structure of the optimal policy. We can compute the number of periods it takes for
an optimal policy to converge to the golden rule stock, and explicitly graph their dependence

6 See, for example, Stiglitz (1968) in the context of a related model, and Koopmans (1967a, 1967b) for a
general class of one-sector models.

7 However, it is worth observing that in either case, the full implications of all of this work have yet to be
drawn out for the field which originally served as their primary motivation—development economics.

8 However, here too the diagrammatic methods are primarily illustrative, as in, for example, McKenzie
(1999, Fig. 7). However, McKenzie (1983, Fig. 1) may possibly be an exception, but it is a setting with
discounting. We leave it for future work to show how Liviatan’s geometry for the one-sector model in
Liviatan (1970) can be supplemented by one pertaining to the reduced form.

9 Such a tradition of exposition and investigation of course begins at least with Marshall’s “Pure Theory of
Foreign Trade” and continues with Samuelson, Meade, Johnson, Bhagwati, Jones, Findlay and Corden among
others. In the context of growth theory, see Koopmans (1964). For a succinct statement on the advantages
of the geometric method, see for example Marshall (1879, p. 5) and Johnson (1971, pp. 9–10). For differing
reactions to the use of geometry, see Kurz’s (1970) and Shackle’s (1956) reviews of Meade’s work and
Koopmans (1957, essay 3) and Koopmans (1964). We owe the first Koopmans reference to Ron Jones.
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on the range of the initial stocks of capital. In particular, even in situations where, in
general, there is convergence to the golden rule stock in an infinite number of periods, we
can identify a set of initial stocks, admittedly negligible, in the sense of a zero Lebesgue
measure. Furthermore, by showing how basic and beautiful ideas in the general theory of
intertemporal resource allocation are given a concrete form amenable to geometric
manipulation, albeit in the specific context of our simple model, we hope to make them
accessible to a wider audience.10

We conclude this introduction with a schematic outline of the paper. In Section 2, we
develop the model and place it in the context of the two-sector neoclassical setting originally
associated with Srinivasan and Uzawa.11 Sections 3 and 4 lay out the basic geometrical
apparatus that is put to use in Sections 5 to 9 to chart out the optimal policies under the
various values of the parameter ξ. Section 10 relates our geometry to that of Mitra and
Nishimura and concludes. Our geometrical analysis rests on two basic mathematical results:
the Kuhn-Tucker theorem of optimization theory, and the Brock theorem on the existence
of optimal programmes obtained as those minimizing aggregate value losses at suitably
defined prices; see Uzawa (1958) and Brock (1970) respectively. For the reader’s conveni-
ence, we present a (slightly extended) version of the latter in an Appendix.

2. The model and its antecedents

As already emphasized in the introduction, the special case of the RSS model that we
analyse in this paper is also a special instance of the standard two-sector model of optimum
economic growth.12 There is a consumption and an investment sector, and at any moment
in time, the planner allocates an exogenously given amount of capital and labour to either
sector, and which, after taking an exogenously given rate of depreciation into account,
yields a new level of capital in the next period. This, combined with an exogenously given
growth rate of labour (assumed to be zero), allows a repetition of the process. Given the
planner’s objective function, and an initial stock of capital and labour, questions relating
to an optimum programme can be posed and studied. 

The model is distinguished by the fact that there is only a single technique of production
in each of its two sectors, and that the investment sector uses only labour. Let a > 0 units of
labour be required to produce a single machine and that a unit of labour can be used with
a single machine to produce a unit of output. We shall assume both labour and machines
(capital) to be perfectly divisible, and normalize labour availability to be unity in each period.13

10 For a quick list of the concepts exposited in this paper, the reader can see the last paragraph of the next
section. Given the modern emphasis on recursive methods, none of these concepts are included, for exam-
ple, to the textbook of Stokey and Lucas (1989), or the Majumdar et al. monograph (2000), for example.

11 Also see Shell (1967) and Haque (1970) in the context of optimum growth. The use of the two-sector model
in the theory of international trade has a long tradition; see Jones (1959b), Johnson (1971) and their references.

12 In addition to Srinivasan (1964), Uzawa (1964), Shell (1967) and Haque (1970) in the case of optimum
growth with discounting; also see Mitra (2000) for references to modern work. As is well known, the
model has been used and exposited by Uzawa, Solow, Meade, Johnson and others in the context of so-
called descriptive growth. We also give no references to the long tradition of the use of this model in
Heckscher-Ohlin-Samuelson trade theory, as exposited for example in Jones (1965b) and Johnson (1971).

13 The latter assumption seems to be in keeping with the tone of the time; see Aghion and Howitt (1988,
Section 1.2) for the exposition of what is termed there as the Cass-Koopmans-Ramsey model. Such an
assumption is also made by Srinivasan (1962) and by Stiglitz (1968, 1973a, 1973b).
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With these simplifications, the amount of machines used in the consumption sector, y(t),
is identical to the amount of labour being used in that sector and to the amount of the
consumption good c(t + 1) being produced. Since we also assume that the felicity func-
tion w(⋅) to be linear and normalized so that w(c(t + 1)) = c(t + 1), y(t) also represents the
utility levels obtained in the next period. If we let x(t) be the amount of machines availa-
ble in this period, and z(t + 1) the amount of machines in production in this period (to be
made available next period), we obtain

0 ≤ y(t) ≤ x(t) (the capital constraint) and; 0 ≤ y(t) ≤ 1 − az(t + 1) (the labour constraint).
(1)

Thus the total amount of machines available in the next period is given by

x(t + 1) = z(t + 1) + (1 − d )x(t) ⇒ y(t) ≤ 1 − a(x(t + 1) − (1 − d )x(t)). (2)

Thus, in the language of control theory, x(t) represent the state variable, and (c(t + 1),
z(t + 1)) = (y(t), z(t + 1)) the control variables, with the control set from which they are to
be chosen, given by Equation (1). All that remains then is a precise specification of the
planner’s objective function. 

 In supposing that future welfare levels are treated similar to current ones in the planner’s
objective function, we take our lead from Ramsey (1928), but rather than the assumption
of a “bliss point” or that of “capital saturation”, as in Ramsey (1928), Samuelson and Solow
(1956) and Samuelson (1965), we work with the “overtaking criterion of optimality” of
Atsumi (1965) and von Weiszäcker (1965). Towards this end, given an initial capital stock
x0 ≥ 0, we work with programs starting from x0. These are simply non-negative sequences
of capital stocks  such that x(0) = x0 and which satisfy the technological and
material balance constraints laid out in Equations (1) and (2) above. A programme

 starting from x0 is said to be optimal if there does not exist any other pro-
gramme  starting from x0 that overtakes it, which is to say that there does
not exist any ε > 0, and a time period tε such that 

Thus an optimal programme is one in comparison to which no other programme from the
same initial stock is eventually significantly better, for any given level of significance. A
programme14  is said to be stationary if it is constant over time, i.e., ( y(t + 1),
x(t + 1)) = ( y(t), x(t)) for all t = 0, 1, . . . . A programme is said to be a stationary optimal
programme if it is stationary and optimal.

Through our emphasis on our model as a special instance of the neoclassical model of
optimal growth, we under-emphasize the assumption of fixed coefficient technology. It is
this assumption that takes its lead from Von Neumann (1935–36) and looks towards the
multi-sectoral setting in the work of Gale (1967a), Brock (1970) and McKenzie (1968),
finding its culmination in the so-called “reduced form” model.15 This is summarized by

14 If we do not specify the starting point of a programme, the reader should take it to mean that it starts
from its value at time zero.

15 McKenzie (1999, p. 389) dates this “reduced form” model to 1964, and describes the work of Gale, McFadden
and himself as a “fusion of the Ramsey and von Neumann models”. Malinvaud’s 1953 paper is also an
important step in this evolution. For a comprehensive survey of the discounted setting, see Mitra (2000).

{ ( ), ( )}y t x t t=
∞

0

{ *( ), *( )}y t x t t=
∞

0

{ ( ), ( )}y t x t t=
∞

0

( ( )  *( ))         .y t y t T t
t

T

− ≥ ≥
=
∑ ε εfor all    

0

{ ( ), ( )}y t x t t=
∞

0



The Japanese Economic Review

– 196 –
© 2007 Japanese Economic Association

two basic parameters: a period to period technology set in a (product) space of capital
stocks initial and terminal to the period, and a planner’s utility function defined on this
set.16 Such a formulation is flexible enough to yield as special cases the variety of growth
models studied in the literature and thereby qualify as a general theory of intertemporal
resource allocation,17 and it is through the vocabulary of this theory that we analyse the
simple two-sector model studied here.18 In addition to Brock’s theorem, such a formula-
tion leads us to discuss the golden rule capital stock and its associated golden rule price
system, value loss per period and its aggregate over time, the von Neumann facet and its
privileged subset termed here the McKenzie facet,19 and the turnpike and average turn-
pike properties. In terms of a comparison with the methods of Pontryagin, as used in our
context in Stiglitz (1968), perhaps the crucial difference is the possibility of (a complete)
analysis based on the golden rule price system from the very start, rather a price system
that corresponds to the optimal programme, and is then shown to converge to it.20

3. The basics of the geometry

We begin with Figure 1 in which the 45° line serves as an important benchmark. The
number of machines, x(t), available today is measured on the X-axis and that available
next period, say tomorrow, x(t + 1), on the Y-axis. Figure 1 highlights the fact that a
machine is perfectly divisible21 and that we work in discrete time. When the particular
time period is not of any consequence, we shall use the symbols (x, x′) for (x(t), x(t + 1)).

The line OD, lying strictly within the cone formed by the X-axis and the 45° line, rep-
resents a constraint embodying a precise time invariant form of depreciation, one that
does not distinguish between machines produced at different points in time, as well as the
fact that they cannot be disposed off through a market or in any other way. It alerts the
reader to the fact that we work with irreversible investment and that there is a bound to
disinvestment. The slope of OD measures the rate of depreciation;22 a unit of today’s capital
stock depreciates to (1 − d ) units tomorrow.

16 In his work, McKenzie does not give a name for the analogue in a general setting of the set that we
denote by Ω. In Nishimura and Yano (1995), it is referred to as the transition possibility set. The evolu-
tion of this set is of some interest: in McKenzie (1968), it includes values of utilities, while McKenzie
(1971) retains the notational convention of Debreu (1961) where positive numbers stand for outputs and
negative ones for inputs.

17 For statements of the theory and its scope, see McKenzie (1986), McKenzie (1987), McKenzie (1999)
and Mitra (2000).

18 As we shall indicate in the sequel, the relevant theorems of this theory do not directly apply, but the
methods leading to the proofs of these theorems extend to our simple setting in a straightforward way.

19 This terminology is being introduced here for the first time; see Khan and Mitra (2002) for a textual sub-
stantiation. Note also the somewhat more expansive definition of von Neumann facets in Nishimura and
Yano (2000, p. 264; 1995, p. 994).

20 This is of course not to say that a price system associated with any optimal programme has no role to
play in the theory—only that we make no recourse to it for our present purposes.

21 In the sequel, we shall refer to the number of machines interchangeably as the capital stock.
22 The equation of this line is simply x′ = (1 − d )x.
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The line VL is obtained by adding the length23 OV to the line OD. The segment OV
equals 1/a and represents the maximal amount of capital stock available tomorrow if
there is no capital stock available today and all of the labour force is employed. Since this
maximal amount is a constant independent of the initial capital stock, VL is parallel to
OD—in addition to the constraint on the availability of labour in each period, it reflects
the fact that machines are not needed to manufacture machines.24 

The “open” parallelogram Ω enclosed by the lines OV, VL and OD represents the basic
technological specification of the model.25 We shall refer to an element of this period to
period production set Ω, also referred to as the transition set, as a plan.26 Note that a plan
implies a specification of feasible consumption levels, and as such, different from produc-
tion plans in the sense of Debreu (1961). In this connection, two other features of Ω ought
to be noted: (i) the absence of free disposal, already mentioned above; and (ii) a zero initial
stock (input) allows a positive terminal stock (next period’s output), specifically OV, next
period.27

The line segment MV is a “most valuable” construct for the geometric development of
the one-machine version of the RSS model. Note that to begin with, the absolute value of
the slope of MV is precisely the parameter ξ singled out in the introduction,

23 The reader is warned to be alert to identical symbolism being used to designate lengths and lines.
24 The equation of this line is simply x′ = (1 − d )x + 1/a.
25 Formally, Ω = {(x, x′) ∈ �+ × �+: x′ − (1 − d )x ≥ 0 and a(x′ − (1 − d )x) ≤ 1}.
26 We shall not resort to the qualifying adjective “feasible” when we refer to a plan.
27 This does not of course imply a “free lunch”—labour which is kept in the background, is being used to

produce the output. McKenzie’s intuition of this set (1999, Figures 7 and 8), for example, bears comparison
with Figure 1.

Figure 1. Specification of the period to period production set Ω
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(3)

More generally, for any plan S on MV with generic coordinates (x, x′), we can appeal to
properties of similar triangles,28 to obtain the equation of the line MV,

(4)

It is important to note that the second form of the equation of MV equates the two constraints
presented as Equations (1) and (2), and thus represents a situation where the amount of labour
needed to attain the terminal capital stock x′ leaves as a residual precisely the amount to
fully utilize the initial capital stock x in the consumption sector. As such, MV is the locus of
initial and final terminal stocks for which there is full employment and no excess capacity
of capital, and hence it can be referred to as the full employment, no excess-capacity line.

Since full employment of capital and labour is a crucial consideration and cannot be
automatically presumed in the model, a further elabouration of MV is warranted in this
connection. Note that it divides Ω into two parts: the triangle MOV and the “open”
remainder LV MD. Consider any plan in the triangle MOV not on MV, say S2, and note that
the amount of terminal capital stock required to generate full employment is given by the
ordinate of the plan S; since net investment at S2 is only S2Sd, the ordinate of S2 falls short
by the amount SS2. This segment SS2 then is a measure of surplus labour. Similarly, any
other plan of Ω “below” the line MV, the plans S3 and Sd for example, all machines are
being utilized in the consumption sector, but there is not enough activity in the investment
sector to support full employment, and hence the presence of surplus labour (in the
amount S1′S3 at S3). At plans “above” MV, plans S1 and SL in LV MD for example, the situ-
ation is reversed in the sense that there is not enough labour left over from the investment
sector to utilize all of the available machines, and hence some machines are being left idle
with resulting excess capacity. The question is how much of the available capital stock is
then being used in the consumption sector.

The technological specification of the consumption sector, is not explicitly graphed in
Figure 1,29 but the constraints in Equations (1) and (2) allow us to express a fixed level of
labour employment in the consumption sector, say y2 as a line parallel to VL and MD and
terminating at MV in a downward vertical, as exhibited in Figure 2.30 This allows us to see
the kinked lines OVL and mMD as zero and unit iso-employment lines in that sector, and MV
in its second identity—the segment of the transition set Ω on which these iso-employment
lines are pegged.

28 Our prerequisite is a most basic one; for a detailed treatment, the reader can see Herberg and Orleans
(1940, Chapter IX) or Artmann (1999, Chapter 15).

29 McKenzie (1976, p. 846) writes “When our interest is an asymptotic property of the path of capital
stocks, there is no need to show how utility depends on production and consumption during the period
. . . the significant choice from the viewpoint of the intertemporal maximization problem is the choice of
terminal stocks given initial stocks. This fixes the contribution of the period to the optimal programme.”
However, as we shall see below, in our specific context, the diagram can be useful even for the delinea-
tion of consumption levels and of dynamics in the short run.

30 In set-theoretic notation, the y2 iso-employment line is given by {(x, x′ ∈ Ω: y2 ≤ x and x′ = (1 − d)x +
(1 − y2)/a}.
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We can now use these iso-employment lines to compute the excess capacity for any
plan in LV MD. Consider the plan S1, and note that its iso-employment line is given (in
part) by S3S1′S. At S1 there is more investment activity that allows all the machines to be
utilized, and only the amount of employment designated by the abscissa of S1′ is available
for the consumption sector. Hence at S1, there is full employment of labour, but idle
capacity of the amount x − S1′S1″; only part of the stock of available capital, as measured
by S1′S1″ is used. Similarly, at the one-period plan, SL, zero capacity utilized is while at S
it is unity with all the available capital stock being used. 

It is worth noting at this stage that at a given initial capital stock x, the movement from
SL to Sd traces out a production possibility surface in the space of consumption and invest-
ment goods, as pictured in Figure 3. It is useful to see how the arguments furnished above
in the context of Figure 1 translate to Figure 3. If all labour is employed in the investment
sector, the economy is at SL in Figure 3, with complete specialization, full employment
and zero capital utilization. As we move down the production possibility surface,
decreased investment and the consequent release of labour leads to the production of
the consumption good, and to an increase in the utilization rate of capital. Beyond S, any
further increase in the consumption is blocked by the capital constraint, and the only
effect is a corresponding increase in unemployment.31

31 Note how Rybczynski’s theorem pertaining to an equilibrium without specialization holds in our setting.
As x increases, the capital intensive consumption good increases and the investment good (with zero
capital intensity) decreases. This conclusion is reversed with an increase of labour. For details, see for
example Jones (1965a, 1965b), and also Johnson (1971).

Figure 2. Iso-employment lines and the specification of planner’s preferences



The Japanese Economic Review

– 200 –
© 2007 Japanese Economic Association

It is now a simple matter to depict the planner’s preferences in the (x, x′) plane. By specifi-
cation and construction, the amounts of labour and capital being used in the consumption
good sector are both identical to the amount of the consumption good and the level of utility
being produced, and thus the indifference curves are simply the iso-employment lines. The
line MV now takes on a new identity having solely to do with preferences; it pegs a map of
kinked (Leontief-type) indifference curve in the (x, x′) plane. The planner’s preferences are
complete in the sense that we now have an indifference map over the entire transition set Ω
with OVL marking the zero utility and mMD the maximum utility indifference curves. We shall
denote the utility function32 corresponding to this indifference map is by (x, x′) → u(x, x′).

The basics of our geometrical apparatus are now all laid out: the 45° line, the lines VL
and OD constituting Ω, the point M corresponding to the (normalized) unit labour supply,
and the line MV delineating both a privileged subset of Ω and the indifference map cor-
responding to u.33 

4. Determination of the benchmarks

The first unknown to be determined is a standard benchmark in the theory of inter-
temporal resource allocation—the level of the capital stock that allows a maximal sustainable
utility level, the so-called golden rule stock X. McKenzie refers to this as a “von Neumann

32 Analytically, the utility function is given by u(x, x′) = max{y ∈ �+: 0 ≤ x and y ≤ 1 − a(x′ − (1 − d )x)} =
min[1 − a(x′ − (1 − d)x), x].

33 The period to period production set Ω has been specified in footnote 25 and the utility function u in foot-
note 32.

Figure 3. Production possibility surface and planner’s preferences
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point” and describes it as a “point of maximal sustainable utility, the terminal capital
stocks must be as large as the initial stocks, and the utility must be as large as possible given
this condition.”34

Such a capital stock is easily seen in Figure 4 to be the unique one-period plan G
obtained by the intersection of the 45° line with MV. But the geometry actually enables
us to compute it once we recall the slope of the line MV identified in (3) above. Since
∠VGG ′ = ∠VMM ′,

(5)

The golden rule stock is the solution to a maximization problem in which the objective
function u is maximized over the constraint set Ω and the additional sustainability con-
straint that terminal stocks are not less than the initial one.35 As such, there is a shadow
price p associated with the sustainability constraint. On appealing to Uzawa’s version of
the Kuhn-Tucker theorem Uzawa (1958),36 we can write

34 See McKenzie (1999, p. 389). For a formal definition in the context of this model, see Khan and Mitra
(2003), and more generally Gale (1967a), Brock (1970). In the sequel, depending on the context, we
shall use the terms “golden rule stock” and “von Neumann point” interchangeably.

35 Analytically, we maximize u(x, x′) subject to x′ ≥ x for all (x, x′) ∈ Ω.
36 Note that all of the conditions for the invoking of this theorem are satisfied: u is a concave function, Ω

is a convex set, and the positivity of a leads to Slater’s form of the Kuhn-Tucker qualification being
satisfied. Also see Gale (1967b) for a generalization relevant to context of growth theory.

Figure 4. Determination of the golden rule stock, the golden rule price system and the corresponding no 
value loss line
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u(x, x′) + p(x′ − x) ≤ u(X, X) for all (x, x′) ∈ Ω. (6)

We can now follow Radner (1961) and define the value loss δ(p,X)(x, x′) at the golden rule
price system p associated with the one-period plan (x, x′ ) by rewriting the above as37 

δ(p,X)(x, x′) = u(X, X) − u(x, x′) − p(x′ − x) for all (x, x′ ) ∈ Ω. (7)

All this is a standard rehearsal of a key concept in the general theory of intertemporal
resource allocation;38 what is new is that we have the machinery we need to furnish a
clear geometrical representation of this idea. 

We begin with, the determination of the golden rule price system p. Towards this end,
consider Figure 4, and note that the zero net investment plan M, given by (1, (1 − d )), can
be substituted in Equation (6) to yield

(8)

By the same token, the maximal net investment, zero consumption one-period plan M, given
by (0, 1/a), can be substituted in Equation (4) to yield

(9)

Now, on using the value of X in Equation (5), an easy computation yields 

Hence, the weak inequalities are all equalities in the following expression,

(10)

But then in terms of the geometrical development, we have shown that the angle ∠OV ′G
equals the angle ∠M′PM, which implies that the line V ′O is parallel to the PM ′, and
hence that the slope of either of the lines V ′O and PM ′, measured relative to the Y-axis,
is the golden rule price system.

All that remains is the determination of the zero value loss line, which is to say, the
locus of all plans for which δ(p,X)(x, x′) = 0. From Equation (7), we obtain

37 Note that we are defining a function δ(p,X): Ω → �+. We depart from the literature in retaining the sub-
script (p, X) in δ(p,X)(x, x′) even though the golden rule price system will remain fixed in the sequel.

38 As surveyed for example in McKenzie (1986). One may quote here Gale’s (1967, p. 22) statement that
the necessity and sufficiency of Brock (1970) for the X to be the golden rule stock “provides the single
most important tool in modern economic analysis both from the theoretical and computational point of
view.”
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δ(p,X)(x, x′) = u(X, X) − u(x, x′) − p(x′ − x) 
= [u(X, X) − x − p(x′ − x)] + [x − u(x, x′)] 
= the shortfall from golden rule utility level + idle capacity. (11)

The first point to be noticed in this connection is that the absolute value of the slope of
the line MV, ξ, also turns out to be characterized by the golden rule price system in a
particularly simple form. Working with Figure 4, we obtain

(12)

where the last equality follows from the above identification of the golden rule price system.
Once the slope of the line MV is determined, we need only its intercept for a full identifica-
tion. Since MV passes through the golden rule stock point X on the 45° line, we obtain its
equation as

(13)

We have already seen the line MV serving three distinct roles: as the full employment line;
no excess-capacity line; and as a benchmark for delineating the iso-employment lines in the
consumption sector as well for the planner’s preferences. The latter yielded, in particular,
the conclusion that the utility level, u(x, x′), of any plan (x, x′ ) on MV is x. On substituting
Equation (13) in (11), we obtain

px′ + x − px = u(X, X) ⇒ 0 = u(X, X) − u(x, x′) − p(x′ − x) = δ(p,X)(x, x′)  (14)

and thereby discover a fourth identity of the line MV in this geometric development: it is
the zero value loss line, and constitutes what is referred to as the von Neumann facet.39

But now, we are in a position, through Figure 5, to determine the value loss of any plan
in Ω. As Equation (11) makes clear, this value loss is not determined solely by the differ-
ence in intercepts (say, on the 45° line) of MV and a line parallel to it and passing through
the one-period production plan. For one thing, this would lead us to conclude that there is
value gain as the line MV moves outwards. Lines parallel to MV are indeed iso-value loss
lines, but they depict the value loss after taking excess capacity into account. For all plans,
say F with coordinates (x0, x0′ ), in the surplus labour triangle MOV, there is no excess
capacity of capital and hence its utility is furnished by its first coordinate, leading to the
second term in Equation (11) being zero. Hence its value loss consists only of its shortfall
from the golden rule utility level, the first term in (11). This is given by the difference
between X and the abscissa of the point of intersection of the 45° line with a line M ′V ′

39 See McKenzie (1986, 1987, 1999), McKenzie (1990, p. 391) writes “The von-Neumann facet plays a
crucial role in the multi-sector Ramsey model once the assumption of strict concavity of the reduced
utility function is dropped.” As the reader has noticed, this assumption of strict concavity does not hold
for the special case of the RSS model that we are working with; also see Nishimura and Yano (1995,
p. 994; 2000, p. 264).
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parallel to MV and passing through F. Let the coordinates of this point of intersection T be
given by (x, x), and hence the equation of the line M ′V ′ is given by40 

(15)

We can now obtain the shortfall from the golden rule utility level that we seek: 

(16)

In this demonstration, we have also shown that any plan on M ′V ′ has the same value loss. 
Next, we turn to plans in the “open” parallelogram LV MD. In this case, value loss

stems from both excess capacity and from the negative shortfall from the golden rule util-
ity level. We have already seen that this shortfall is the same for all plans on the line S1S2

parallel to MV, and is given by the difference between X and the abscissa of the point of
intersection S3 of S1S2 and the 45° line. In order to show that S1S2 is an iso-value loss line,
all that remains for us to show is that the excess capacity associated with any plan on it,

40 The procedure is identical to that already used in Gale (1967a) in the derivation of the equation of the
line MV.

Figure 5. Iso-value loss lines
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say S2, S3, S4 or S1, is identical. This is easy from our procedure for computing excess
capacity: all of the triangles with vertices S1, S2 and S4 exhibited in Figure 5 are congru-
ent, and hence their bases are equal.

Next, we show that the value losses increase as iso-value loss lines move “away” from the
zero value loss line MV in either direction. This is clear when we limit ourselves to the full
capacity, surplus labour triangle OMV. In the full employment, excess capacity area LV MD,
the difficulty lies in the fact that as MV moves outwards, both the negative shortfall from
golden rule utility as well as the excess capacity increase. However, the latter increases
more than the former. To see this, consider the parallel lines M ′V ′ and M″V″ in Figure 6.
The increase in the shortfall amounts to x1x2, whereas the increase in the excess capacity
is the amount W1W2. To see that W1W2 is always greater than x1x2, draw a line V ′F parallel
to the 45° line, and observe that the difference in the abscissae of the points F and V′
(which is x1x2 since triangles with vertices F and F′ are congruent) is smaller than W1W2. And
this is always so by virtue of the fact that the slope of the 45° line is steeper than the slope of
OD, which is another way of saying that the rate of depreciation d is always less than unity.

Finally, we show that the sum of the value losses of two plans, say P1 and P2 on a hor-
izontal line beginning at G as in Figure 7, equal the value loss of their sum P3 = P1 + P2. In
Figure 7, let H1P1, H2P2 and H3P3 be iso-value loss lines. Since GP1 equals P2P3 by hypo-
thesis, the triangles GH1P1 and H2H3Z1 are congruent. Hence GH1 equals H2H3 and hence
H2Z equals GS1. This establishes that GS1 + GS2 = S2S3 + GS2 = GS3, and hence the sum of
the individual shortfalls from golden rule utility is the shortfall of the sum. Next, note the
congruence of the triangles GG1P1 and G2G3Z2, and hence the equality of GG1 and G2G3,
and therefore of their projections on the horizontal through G and G2 respectively. Hence

Figure 6. Changes in value loss as VM moves outwards
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the sum of the excess capacity at G1 and G2 equals the excess capacity at G3. This com-
pletes the proof of our claim. 

 In iso-value loss lines, we have a basic geometric tool to characterize optimal policies
and we turn to providing such a characterization. 

5. Optimal policies (−−−−1 <<<< ξξξξ ≤≤≤≤ 0): monotonic convergence

We begin with Figure 8 which depicts the case where the slope of the MV line is positive
and lies in the open unit interval, i.e., where −1 < ξ < 0. Since the geometry developed is
premised on this slope being negative, this may be disorienting, but we invite the reader
to check that all of the previous arguments carry through in a routine manner.41 However,
for economy of notation and expression, we shall henceforth refer to the golden rule stock
as g, and the unit capital stock as m. We can now read off the singular values , . . .
to the right of m, and , . . . to the right of g.42

41 This is also a good exercise; geometrical argument is perhaps even less of a spectator sport that analytical
argument.

42 This is simply to say that a countable number of intervals , n = 0, 1, 2, . . . ,  = m, cover the
interval x > m, where the relevant formula is  = 1/(1 − d )n, n = 0, 1, 2, . . . . Similarly, a countable number
of intervals , n = 0, 1, 2, . . . ,  = g, cover the interval g ≤ x < m, where the relevant formula
is  = g/(1 − d )n, n = 0, 1, . . . .

Figure 7. Sum of value losses equals the value losses of the sum
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We can now claim that for any initial capital stock in the interval (0, m), the optimal
policy is to choose a plan on MV. It is easy to see that the programme obtained in this way
monotonically converges to the golden rule stock, and that it has an aggregate value loss
of zero. Thus, an appeal to the extension of Brock’s theorem (presented as Theorem 1 in
the Appendix) establishes the claim. This result can be succinctly but informally stated as
the assertion that, for the case under consideration, any optimal programme starting on the
von Neumann facet stays on the facet and thereby converges to the von Neumann point.43

It is now easy to characterize the policy function globally. For any initial capital stock,
say in the (n + 1)th interval , n ≥ 0, the optimal policy is to choose the next
period’s capital stock to be on the line MD and thereby move to the nth interval in the next
period. The resulting programme will converge to the von Neumann facet in n + 1 periods,
and by construction, it is one that minimizes aggregate value loss among all programmes
starting from the same initial stock. Hence it is an optimal programme. The optimal policy
then is to follow the path charted by the two lines MV and MD, which is to say, the path
tracked by the difference equation,

x(t + 1) = max[−ξx(t) + 1/a, (1 − d )x(t)] for all t = 0, 1, . . . . (17)

43 For emphasis, in this statement, we refer to the golden rule stock as the von Neumann point; see McKen-
zie (1968). Note also that we are now referring to a programme “starting on the von Neumann facet” by
which we mean that it starts from an initial stock in the projection to the space of initial stocks (the X-
axis) of the von Neumann facet rather than the facet itself. We trust that the abbreviated expression will
not be confusing to the reader.

Figure 8. Transition dynamics −1 < ξ < 0
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There is only one additional point to be made for the analysis to be complete. This is
the observation that for the initial capital stocks , n = 0, 1, 2, . . . , there is convergence
to the von Neumann point (golden rule stock) rather than to the facet, in a finite number
of periods. These possibilities are open neither to a capital poor economy, nor to an
economy which is capital rich in the sense of having an initial capital stock greater than,
or equal to, unity. This is a rare (accidental) event of history. This is simply to say that
the  are of the Lebesgue measure zero.

Next, we turn to the case where the MV line is horizontal, i.e. ξ = 0, which implies that
(1 − d ) = 1/a = 1/(1 + ad ) = X. Figure 9 tells the complete story. The optimal programme
converges to the von Neumann facet MV in a finite number of periods, and to be on the von
Neumann facet is to be at the golden rule stock in the subsequent period. A distinguishing
characteristic of this case is that the singular points  and  coincide. The optimal
policy is to follow the path tracked by the difference equation,

x(t + 1) = max[1/a, (1 − d )x(t)] = max[X, (1 − d )x(t)], for all t = 0, 1, . . . , (18)

which is simply a special case of Equation (17) with ξ = 0. 

6. Optimal policies (0 <<<< ξξξξ <<<< 1): damped cyclical convergence

The fact that optimality requires any programme starting on the von Neumann facet to
stay on the facet is a special property of the two cases considered so far. In particular, as
can be checked from considering the plan V in Figure 10, this is no longer necessarily so
when the slope of the MV line is negative and between zero and one in absolute value; i.e.
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0 < ξ < 1. Here, we can use the values , . . . to read off the singular values ,
. . . to the left of m. Since (0, m) is a finite interval, there will only be a finite number, say
N of such values.44 In Figure 10, N equals one.

We can now utilize the methods of the previous section to conclude that the optimal
policy function for any initial capital stock greater than or equal to  is to follow the
path charted by the two lines M1M and MD, and as such, it is an interesting mix of mono-
tonic and cyclically damped outcomes. For all initial stocks greater than m, the optimal
policy is just as before; namely, to choose a corresponding plan on the line MD and move
to the adjacent left interval. This is to say that an optimal policy for a capital rich economy
is to depreciate down to the von Neumann facet. Once on this facet, the optimal policy is
to converge to the golden rule stock, but unlike the previous cases, it is to proceed to it
cyclically—by over-building and by under-depreciating relative to the golden rule stock
(von Neumann point). The only exception to a cyclical outcome is represented by the singular
values  (not shown in Figure 10 to avoid clutter) which lead to monotonic convergence. 

We now see that by virtue of  being undefined in Figures 8 and 9, the property that
characterized the von Neumann facet now applies only to a distinguished subset of it,
namely M1M. We shall refer to it as the McKenzie facet; it includes the von Neumann
point and has the property that any programme starting on it remains there. The question
still to be answered is what the planner ought to do regarding initial stocks that are on the

44 Formally, this is simply to say that there exists N such that a finite number of intervals ,
n = 0, 1, 2, N, and  cover the interval (0, m) where  is also m. The relevant formula is

 n = 0, 1, . . . , N. 
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von Neumann facet but not on the McKenzie facet. Put differently, we need give a char-
acterization of the policy function that is global and includes the interval . 

We can now assert that the policy function is given by Equation (17). This is to add
to our previous claims the observation that for any initial capital stock in the interval

, the planner chooses a corresponding plan on the line segment V M1 not including
M1. Suppose this is not the case and, to begin with, we have a situation pictured in Figure 11a
whereby, along the optimal programme, S is chosen instead of the the full employment
plan F, followed a period later by S′. We can show that an alternative programme with full
employment in the period under consideration but otherwise lagged to the given one by
one-period, yields a lower aggregate value loss. This is to argue that the value loss at S is
strictly higher than at S ′. This can be easily demonstrated. Note that TU represents the
value loss at S. Let U ′ be the intersection of the vertical through F ′ and a line parallel to
the 45° line through U. Let T ′ be the intersection of the 45° line and the horizontal through
U ′. It is clear that the triangles TUG and T ′U ′F ′ are congruent. Hence T ′F ′ equals TG
equals SW, where the line SW is parallel to the 45° line. Since SF equals S ′F ′ by hypothesis,
the triangle SFW is congruent to the triangle T ′S ′F ′, and hence ∠SFW equals ∠F ′S ′T ′,
allowing us to conclude that S ′T ′ is parallel to MV and hence is an iso-value loss line.
Since the rate of depreciation is less than unity, the line through G parallel to OD inter-
sects T ′S ′ at a point to the right of T ′, and hence the value loss at S′ is strictly less than at
S. Note that the success of this demonstration hinges crucially on the discount factor
being unity, but not on the slope of the line MV.45

Thus the only question is whether the alternative programme of the type that we con-
sidered above in Figure 11 is available to the planner. Going back to Figure 10, we see that
for the stock x(t), any plan whose abscissa is below S1 such as S, precludes the availability
of such a programme. But in this case, a four-fold argument delivers the conclusion that
we seek. Consider a programme starting at x(t) above MV. Given what we have concluded
about the optimal policy for plans on MD, an alternative programme starting on MV but
otherwise identical to the given plan yields a lower value loss. For a programme starting
from a plan equal to or above M1′M1 but below MV, the type of programme that we
charted through the consideration of Figure 11 above is indeed available and the previous
argument applies. All programmes starting at plans with ordinates below M have a higher
aggregate value loss than a programme that reaches the golden rule stock in one period.
Thus, we need to concentrate only on the fourth possibility, concerning programmes starting
at a plan whose abscissa is x(t) and whose ordinate is between those of M and M1, say S.
Note that the aggregate value loss of any programme starting at S1 is the value loss at S1

plus the aggregate value loss of any programme starting at M1. Similarly, the aggregate
value loss of any programme starting at S is the aggregate value loss of any programme
starting at S ′ plus the difference in the value losses of the plans S and S ′. Since S1M1

equals the interval SS ′, the value loss at S1 equals the difference in the value losses of the
plans S and S ′. Then, if the aggregate value loss of the programme starting at S is less
than or equal to that starting at S1, the aggregate value loss of a programme starting at S′
is less than or equal to that starting at M1; but this is a contradiction. 

So we have now extended the optimal policy function from the union of MD and MM1 to
the union of MD and MM2. We now proceed to the next left adjacent interval to ,

45 In order to show that the argument applies without any change, Figures 11b and 11c reproduce Figure
11a with different absolute values of the slope of MV. 
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and repeat the argument with M2′M2 playing the role of M1′ M1. Since there are a finite
number of left intervals, we obtain an optimal policy function for any non-negative initial
capital stock. The argument is complete. 

There is only one additional point to be made. This concerns the singular initial capital
stocks , n = 0, 1, 2, . . . , and , n = 0, . . . , N, from which there is convergence to the
golden rule stock in a finite number of periods.46 For a capital rich economy, one that
finds itself at , this convergence is monotonic. These possibilities are also available to
a capital poor economy, but only after a (heavy) over-building phase in the first period,
and the poorer the economy, the heavier the phase!

46 To avoid clutter, we do not mark them in Figure 10. The formula for  remains to be furnished, but as in
footnotes 42 and 44,  n = 0, 1, . . . , n. Now 

Figure 11. (a) Full employment 0 < ξ < 1; (b) Full employment ξ = 1; (c) Full employment ξ > 1
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7. Optimal policies (ξξξξ ==== 1): convergence to limit cycles

In Figure 4, the line MV is orthogonal to the 45° line, an incidental aspect that we have
so far ignored in our discussion. This orthogonality is simply a consequence of how the
two parameters, a and d, relate to each other. In particular, from Equation (3), and the fact
that the ∠OV M is 45°,

(19)

An alternative way of seeing this is to note

(1/a) = OV = VM″ + M″O = M″M + M″O = 1 + (1 − d ) = 2 − d.

For later reference we graph this relationship in Figure 12, and simply note here that it
depicts the range of parameter values of the model, albeit singular, under which we work
in this section.47 

Note that, irrespective of the slope of MV, the segment PM (say in Figure 4) equals the
rate of depreciation d. In Figure 13, PM1 and QM are parallel lines measuring the ordinates
of the points P and M respectively. Since MV has a slope of 45°, M1PM and PMQ are
isosceles triangles, and hence PM1 and QM are also equal to d. Hence M1Q is a vertical
line segment, and therefore also of length d. In other words, PMQM1 is a square with the
golden rule stock as its centre (indicated as G in Figure 4, but not indicated in Figure 13).

47 Note also the function relating a to d is an infinitely differentiable convex function.
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With this, the geometry brings to light interesting invariants pertaining to the case that we
are considering. Irrespective of how a and d change, but provided that they continue to
relate to each other as graphed in Figure 12, the golden rule stock X is given by 1 − V ′V =
1 − (d/2), the abscissa of Q is (1 − d ), and finally, the golden rule price system, p, as given
by the ratio, M′M to PM, is always one half, and thereby independent of a and d. Since
OG equals GV (in Figure 4), the golden rule stock X could alternatively be expressed as
1/2a.48 Finally, note that the slope of the lines OM1 and OV′ also equal one half, and hence
the points O, M1 and V′ are collinear. Similarly, the points V, Q and g are collinear.49

We can now use the methods of the previous section to assert that MM1 is the McKenzie
facet, any programme starting on it remains on it, and since it has an aggregate value loss
of zero, it is an optimal programme. This is a result that also has a surprise to it, ruling
out as it does, other plausible intuitions about the optimal policy. Thus, given the initial
capital stock in the interval , it rules as non-optimal the entirely feasible trajectory
of maintaining unemployment and “jumping” to the golden rule stock the next period—
to be at the mid-point of M1Q rather than at M1. Again, with an initial capital stock of
unity, it rules as non-optimal the policy of maintaining consumption at the golden rule
level at the level and investing so as to have the golden rule stock of machines tomorrow—
to be at the mid-point of PM rather than at M. 

48 Once the geometry allows us to see these invariants, it is a simple matter to obtain them algebraically
from the formulae furnished above.

49 Since the points M1 and Q′ are obtained in different ways in Figures 4 and 13, the last two  observations
show that there is no inconsistency.

Figure 13. Transition dynamics ξ = 1
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An important aspect of these optimal programmes deserves to be highlighted. The
geometry, in particular the fact that PMQM1 is a square with the plan (g, g) as its centre,
makes it evident that the average of the optimal programme starting from any initial stock
in the interval QV is precisely the golden rule stock. This is Brock’s average turnpike
property which asserts that the average of the capital stocks of all “good programmes”
(and not only the optimal ones) converge to the golden rule stock.50 This is precisely the
case when the optimum programme remains on the von Neumann facet but does not con-
verge to the von Neumann point, as is the case here.51

When we turn to initial capital stocks that lie outside the interval MM1, we fall back on
the methods of the previous section to show that choices of plans on the union of the lines
MV and OD lead to a programme that minimizes aggregate value losses of all programmes
starting from the same initial stock, and hence is optimal. As in Section 5, we first con-
sider intervals to the right of m, and then utilize the methods of Section 6 to consider
intervals to the left of m.52 Within these intervals we identify the singular values  and

 from which the optimal programme converges to the golden rule stock in a finite
number of periods. Indeed, if we regard the golden rule stock as an equilibrium cycle with a
zero amplitude, we can read off singular values corresponding to any particular equilibrium
cycle such that the optimal programme from these identified values converges to that par-
ticular cycle in a finite number of periods. Whereas for any particular cycle, these singular
values are “few”, their union over the uncountable infinity of equilibrium cycles will cover
the entire (non-negative) X-axis. 

We are now in a position to conclude this section with two observations. First, note that
the set of equilibria to which the optimal programmes converge are of uncountable cardin-
ality; and whereas it does not make sense to say that this cardinality is inversely related
to the rate of depreciation, we can say that the “size” of the McKenzie facet, the length of
the interval MM1 serving as a proxy for this size, increases as we decrease both d and a in
a way that is consistent with the relationship pictured in Figure 12. The second point relates
to what is termed as “history independent” dynamical systems in Mitra and Nishimura
(2001b). The optimal policy function underlying the optimal programme leads to a
dynamical system which is anything but history independent. The speed of convergence
to the equilibrium, but perhaps more importantly, the particular equilibrium and its ampli-
tude, are all dependent on the initial stock of machines the economy is endowed with.
However, if we use the amplitude of the equilibrium cycle as a measure of the “volatility”
of equilibrium, our reference to  and to  as singular values is justified. They
represent values of the initial capital stock at which volatility of equilibrium is respec-
tively maximized and minimized. This is illustrated in Figure 13.

50 See Gale (1967a) for a definition of “good programmes”, and Brock (1970) for details pertaining to the
“average turnpike” property. In particular, note the importance of the assumption that the golden rule
stock is unique. In the context of the RSS model, see Khan and Mitra (2003), and in particular, Propo-
sition 4 for the claim that any programme which is not good is “bad” in the sense of making infinite
aggregate value losses. It is also worth pointing out that “good” programmes are referred to as “eligible”
programmes in Koopmans (1965).

51 It is also the case when Inada’s 1964 assumption that “all paths that remain on the facet forever converge
uniformly to a maximal stationary path” does not hold; see MeKenzie (1987, p. 15) for a discussion.

52 Figure 11b and Footnote 45 are the relevant aids.
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8. Optimal policies (ξξξξ >>>> 1): convergence in two periods

When we turn to Figure 15a which depicts the case where the slope of MV is greater than
that of the 45° line in absolute value and ξ > 1, it is clear that, unlike earlier sections, the
optimal policy is not tracked by the locus VMD. To see this, simply note that a programme
starting at M cycles around the golden rule stock G in a way that the average turnpike
property is violated and the programme keeps on accumulating value losses without
bound. As such, it is bad.53 Thus optimality requires that the planner jump off the locus
VMD, and the question is when and to where. From earlier analysis of the RSS model, we
know that an optimal programme must end at the golden rule stock, and once this is taken
into account, the first part of the question admits the only possible answer, namely, “as
soon as possible.”54 However, given irreversibility of capital, it takes time for the economy
to dispose of its extraneous capital, and the convergence to the golden rule cannot be
accomplished in one period. Furthermore, given the desirability of full employment, a
capital poor economy over-builds, and subsequently over-depreciates relative to the main-
tenance of the golden rule levels, and this too postpones convergence.

A substantiation of these intuitions requires a more intricate geometry than we have so
far encountered. To begin with, we have first to establish the desirability of full employ-
ment for a programme with a minimum aggregate value loss. In Section 5, we saw this as
a consequence of optimality, and in Section 6, by a direct argument based on Figure 11a.
As in Section 7, we leave it to the reader to check that the argument carries over to the
present case.55 However, we now work with the intervals  rather than the intervals

. It is to be emphasized that we establish this result only for the GM segment of
the MV line, and that there is no presumption as to optimality but simply of aggregate

53 See Footnote 50 for a formal definition of a bad programme. This is just a graphical depiction of example
2 in Khan and Mitra (2003).

54 For the long-run properties of an optimal programme, see Khan and Mitra (2003, Section 5).
55 Figure 11c and Footnote 45 are the relevant aids.

Figure 14. Volatility of equilibrium ξ = 1, d = 1/2
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minimum value loss. With it, however, we have now all that is necessary to show that the
optimal policy is to follow the path charted by the three lines VG,  and  in Figure 15a.
This is to say that it is tracked by the following difference equation,

x(t + 1) = max[−ξx(t) + 1/a, X, (1 − d )x(t)] for all t = 0, 1, . . . . (20)

The McKenzie facet is now claimed to shrink to the von-Neumann point and an optimum
programme starting on  “jumps” to G in one period and stays there. We shall estab-
lish this claim in a series of steps; we begin with an initial capital stock of unity, show
how the argument applies to any initial stock in the interval (g, 1), and finally, by moving from
interval to interval, as in the sections above, the entire policy function can be delineated. 
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Figure 15. Transition dynamics ξ > 1
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In keeping with the first step, we work on the vertical through J in Figure 15a, and cor-
responding to J, construct the three benchmark plans J1, J2 and J3 on it. J1, not shown in
Figure 15a, is the plan that leads to J next period if a policy of full employment is fol-
lowed, J2 is a plan on OD that has the same value loss as J, and finally, J3 is the plan that
leads to J2 next period if a policy of full employment is followed. It is clear that the ordinates
of J, J1 and J3 are strictly decreasing.56 The fact that a programme that minimizes aggre-
gate value loss among all programmes starting from a unit capital stock will not be on the
segment above J and below J3 is straightforward. Thus we need only consider the segment
J3J, obviously not including J. 

Figure 15b magnifies Figure 15a around the von Neumann point G. We shall now pro-
ceed in two subcases depending on whether a plan is chosen in the segment J3J1 or the
segment between J and J1. Figure 15b is devoted to the first case. Suppose the planner
chose J1. Since she can also choose it next period, and since this was her optimal choice
this period, stationarity of our model dictates that it is also her optimal choice next period.
But this leads to a programme that keeps accumulating value losses ad infinitum and is
not even a good programme,57 let alone an optimal one. Thus, suppose that the planner’s
choice is represented by the plan Z strictly between J1 and J3 this period, and therefore
limited to P ′M ′ next period. Since P ′M ′ lies strictly to the right of PM, the planner is limited
to the segment between J ′ and J3′ . Suppose it to be Z1′ not equal to Z ′. Given the station-
arity of the model, the point Z1 on PM is feasible, and the optimal path from Z1′  could
have been followed one period earlier with a lower welfare loss by choosing Z1 instead of Z.
Thus, all that remains is a consideration of the choice of the point Z ′. But if Z ′ is optimal
next period, it will remain optimal in all subsequent periods, and we obtain a path that is
not even good, let alone optimal.58

Thus, the choice of any plan on the segments J1M and PJ on the line PM is not optimal.
We now turn to the segment between J and J1. This is more interesting than the segment
J1J3 since the choice of any point on it leads, again through the optimality of full employ-
ment, to a capital stock next period lower than that of the current period, and hence the
argument above does not apply.59 In Figure 15c, a simplification of Figure 15b, let the
planner’s choice be represented by Z and therefore limited to the vertical through J ′ next
period. Indeed, by an application of the previous argument, the planner is limited to the
segment of this vertical between J ′ and Z′.60 Suppose she chose J ′. Since J″J is less than
JZ which is itself less than GJ ′, a consequence of the fact that MV is steeper than the 45°
line, the sum of GJ ′ and GJ″, is larger than GJ. Our result on the sum of value losses
applies, and we contradict the fact that the programme under consideration is a minimum

56 The benchmark plans J1, J2 and J3 correspond to the initial capital stock of unity, but it is clear that these
benchmark plans can be constructed for any other initial capital stock, and, loosely speaking, are thereby
values of the functions J1(J ), J2(J) and J3(J ).

57 See the definition of a good programme in footnote 50. Note that the important point is that these losses
do not converge to any negative number, however large.

58 The point Z ′ on P ′M ′ is the analogue of J1 on PM; namely, it is a one-period plan such that maintenance
of full employment next period leads to an unchanged initial stock of capital.

59 We leave it as an exercise for the reader to determine at what point the argument fails.
60 The point Z ′ on P ′Z ′ is the analogue of J1 on PM; namely, it is a one-period plan such that maintenance

of full employment next period leads to an unchanged initial stock of capital. We have shown through
the previous argument that the planner will limit herself to the segment JJ1 not including J1; also see
footnote 56.



The Japanese Economic Review

– 218 –
© 2007 Japanese Economic Association

value loss programme. Thus suppose that the planner chooses W ′. Then again an initial
choice of W rather than Z yields a programme with a lower aggregate minimum value loss.
The first step of the argument is complete. 

The entire argument can now be repeated for any initial capital stock in the interval
. Pick the corresponding plan on , mark out the three benchmarks corresponding

to it, focus on the segment corresponding to the two benchmarks on the vertical, identify its
two sub-segments, and proceed with a consideration of each sub-segment as indicated above.
Once the optimal policy function is demonstrated to include the segment , we can
show it also to consist of the line  by dividing it to intervals corresponding to G, and mov-
ing outward, from one interval to the subsequent one. Since we have already shown the
desirability of full employment for all stocks in the interval (0, g), the argument is complete. 

In conclusion, as in the previous cases, a capital poor economy over-builds and under-
depreciates relative to the golden rule stock, but in a way that the discrepancies go to zero
in a finite number of time periods, this number depending on the magnitude of the stock
of machines that we initially start with. The only role played by the singular stocks  and

 is that they serve as transition points for the number of periods that it takes for the
optimal programme to converge. The dynamic system is “history independent” in terms
of Mitra and Nishimura (2001b). The equilibrium is unique and optimal programmes,
irrespective of the initial capital stock they begin with, converge to it.61

9. Non-uniqueness of optimal policies (ξξξξ ==== 1)

In the case ξ = 1 considered in Section 7, we refrained from using the optimal programme
to delineate a policy function as consisting of the two lines MV and OD. The reason for this
is hinted at in the statement of Theorem 1 in the Appendix: an optimal programme that
does not converge to the golden rule stock is not necessarily a unique programme. The
point is simply that Brock’s (1970) theorem identifies a programme minimizing the
aggregate value loss among all programmes starting from a given initial stock as an optimal
programme but does not rule out programmes with a positive aggregate value loss as non-
optimal programmes. As we shall show in this section, this is dramatically not the case in
the one type of machine version of the RSS model. 

For concreteness, begin with an initial stock of unity, the abscissa m of the point M in
Figure 16. We first show that it is not optimal for the planner to choose any plan on the
vertical segment above G′. We proceed in two steps. Under the first, consider a pro-
gramme which starts at a point anywhere on the interval PMm, say S1. If the ordinates of
all its subsequent plans are greater than the ordinate of Mg, it can be overtaken by a pro-
gramme that starts at G′ and remains at G for all periods. However, if the ordinate of the
second plan of the given programme is greater than the ordinate of Mg, but is below it in
some subsequent period, then it can be overtaken by a programme that differs from it only
for a finite number of periods: in starting at G′, and remaining at G for all those periods at
which it is above the horizontal through Mg. If the ordinate of the second plan of the given
programme is already below Mg, we are in a special case of the previous possibility, and
it can be overtaken by a programme that differs from it only by starting at the point G′.

61 To be sure, the speed of convergence, and the qualitative feature of the optimal programme (amplitude, mono-
tonic versus non-monotonic convergence etc.), does depend on the initial capital stock, but these features
are not given prominence in the definition of “history independent” systems that we are working with.
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The second possibility is that of a programme which starts at a point anywhere on the
interval G′P not including G′, say S2. If the ordinate of the second plan of this programme
is not less than the ordinate of M, as at S3, then this programme can be overtaken by
another that differs from it only in starting at a plan with the same ordinate as S3. On the
other hand, if this condition does not obtain and the ordinate of the second plan is not
greater than the ordinate of M, as at S4, we need more information about the given pro-
gramme. If the ordinate of the third plan on the given programme is not less than the ordinate
of Q′, then it can be overtaken by another programme that differs from it only in the first
and second plans: M instead of S2 and a plan on the vertical through Q and Q′ with the
same ordinate as S4. If, on the other hand, the ordinate of the third plan of the given pro-
gramme is less than the ordinate of Q′, and remains less than it in all subsequent periods,
then it can be overtaken by a programme that starts at M, and remains at Q. In contrast,
if the ordinate of the third plan of the given programme is less than the ordinate of Q′, but
rises above it in a subsequent period, then it can be overtaken by a programme that differs
from it only for a finite number of periods: in starting at M, moving to Q and remaining
there for only those periods at which it is below the horizontal through Q′. 

Thus any programme starting on the interval G′Mm can be overtaken by a programme
starting in the interval MG′. Now consider the initial stock  and the vertical through Q
and Q′ that designates it. We shall show in three steps that any programme that does not
start at M1 can be overtaken. First, consider any programme starting on the interval above M1,
say at S1′ , and note the plan corresponding to it on MMm; S1 in Figure 16. Such a programme
can be overtaken by a programme that starts at M1 and then follows the programme that was

Figure 16. Non-uniqueness of optimal programmes ξ = 1
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constructed to overtake the programme that started at S1. Second, consider any programme
that starts at a plan in the interval M1Q′, not including M1, say at S4′ . Such a programme
can be overtaken by a programme that starts at P′ and is identical to it if the ordinate of
the second plan of the given programme is above Q, but chooses M and remains at Q for
all those periods when this is not so. 

 The arguments developed for the initial capital stocks m and  can now be
respectively used to apply to any initial capital stock in the intervals (g, m) and .
This is to say that for any initial stock in (g, m), a programme starting at a plan whose
ordinate is above that of G can be overtaken; and asymmetrically, for any initial stock in

, a programme starting at a plan not on P′G can be overtaken. But now the argu-
ment for non-uniqueness of optimal paths is in place. If the programme that starts at G′
and remains at G can be overtaken, it must be overtaken by a programme that remains in
the triangle GG′M. However, this is a contradiction since such a programme has a strictly
lower utility sum than the given programme over any two subsequent time periods t and
t + 1, where t is a positive even integer. But this argument applies to any programme that
starts in the interval G′M and by extension, any programme that starts in the triangle
GG′M. 

The argument is complete and we can combine this analysis with that of the previous
section to furnish what may perhaps be the most significant finding of this paper; namely,
that the optimal policy correspondence for the case ξ = 1, is given

(21)

10. Conclusion and the Nishimura-Yano geometry

We can now offer an algebraic expression of the geometry presented above. On collecting
the various cases presented as Equations (17), (18), (20) and (21), we can summarize the
optimal policy correspondence as

(22)

where the two real-valued functions h and g on �+ are given by h(x) = max[ξx + (1/a), X,
(1 − d )x] and g(x) = max[ξx + (1/a), (1 − d )x]. As is particularly well understood by theorists
of international trade, for consideration of more general models, the geometry facilitates
the expression of the solution and furnishes the intuition around which its analytical
proofs can be constructed. 

This observation leads us to the Leontief two-sector model studied by Nishimura and
Yano (1994, 1995, 1996a, 1996b, 2000) and ask how far one could have gone towards
obtaining Equation (22) by relying only on their geometrical apparatus. In hindsight, it is
also easy to discern leads in the earlier work of Boldrin et al. (1961) and Boldrin and
Deneckere (1990), Figure 10.5), but it is only in Nishimura and Yano (1996a) that there
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is full reliance on a linear programming set-up and, in an adoption of a piecewise linear
reduced form utility function u(⋅,⋅) and explicit avoidance of assumptions on its second
derivative, a departure from methods of differential calculus.62 The authors go beyond
illustration to provide a precise depiction of Ω and u(⋅,⋅), obtaining in the process an
analogue of our MV line which they see, and derive, as a full employment, no excess capa-
city line; see Nishimura and Yano (1995, pp. 986–987) and Nishimura and Yano (1996a,
Figures 1 and 7). There is full appreciation of the fact that the qualitative properties of the
optimal programme, through their dependence on the slope of MV, revolve around the
root of the underlying characteristic equation, and that the only complication arises globally
from the fact that there is a kink in the difference equation; see Nishimura and Yano
(1996a, Figures 1 to 5).63 However, since the authors assume full depreciation, and that
machines are also needed to make machines, their Figure 1 in Nishimura and Yano (1995,
1996a, 2000) is obtained from Figure 1 in this paper by tilting the line OV to the right,
and making the lines VL and OD perfectly flat.64 What is then particularly of interest in
the comparison of the two geometries is that the point V becomes a “live” kink in their
model, constituting the left hand arm of the tent map, and the point M, the important kink
for us, is ruled out of consideration by a limitation to a restricted range of initial stocks. 

This limitation is justified by the fact that Nishimura and Yano are primarily concerned
with developing what is now referred to as an anti-turnpike theorem (see Boldrin and
Woodford (1990, p. 20)) without differentiability assumptions on the given optimal policy
function. As such, the fact that we are concerned with the global characterization of optimal
programmes without discounting is a significant difference in objectives and the corre-
sponding geometrical development.65 In addition to an unlimited range of initial stocks, it
shows up in our exploitation of the MV line and its parallels as the iso-value loss lines
based on golden rule prices. Whereas this aspect plays no role in the Nishimura-Yano
geometrical apparatus,66 we have no use for the subdifferentials of the value and reduced-
form utility functions as in Figures 2–4 in Nishimura and Yano (1995, 2000). What is inter-
esting about the problem studied here is that, rather than all trajectories of the dynamic
system resulting from the RSS specifications, we have to limit ourselves to those that can-
not be overtaken in a well-defined sense. This combination of optimization and difference

62 The consequences of this are explicitly noted in Nishimura and Yano (1994, p. 994). This being said, we
find remarkable the appearance of Figure 10.5 in Boldrin and Deneckere (1990. pp. 248–249) and a ref-
erence to how the authors “exploit the interaction between the downward sloping portion of the policy
function and the depreciation constraint.”

63 In McKenzie (1987, p. 714), McKenzie writes “The behavior of paths on [the von Neumann facet] F
may be studied by means of difference equations” and refers to his 1963 paper where this was “done
explicitly for the generalized Leontief model.” Also, students of dynamic systems are well aware of the
difficulties, and consequent wealth of dynamic patterns, arising from functions with kinks; in addition to
Milnor and Thurston (1977) and Collet and Eckmann (1980), also see Majumdar et al. (2000, Chapter 1).

64 We leave it to the reader to convince herself that our methods and results all go through for the case of
full depreciation.

65 These two different objectives are noted in Boldrin and Deneckere (1990, p. 229): “[W]e do not con-
struct “artificial” economies that exhibit a pre-chosen dynamics in equilibrium. Rather, we start with a
specification of technology and preferences and derive the implied dynamics.”

66 However, it worthy of emphasis that the value loss method plays a crucial role in the Nishimura-Yano
geometry (see Nishimura and Yano (1996a, Lemma 2; 2000, Lemma 4.2)); only that in line with their
objectives, they do not work only with golden rule prices.
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equations in a linear framework, iso-value lines combined with cobweb-like diagrams,
leads to a situation that is double edged. It makes things easier, as in Section 8 where
there is particularly fast convergence despite, or perhaps because of, a root greater than
unity; and also more difficult, as in Section 7, where we have a uncountable multiplicity
of optimum paths, giving the planner substantial “room to manoeuvre”. Whereas the first
is not identified by Nishimura and Yano (1995, pp. 264–265), it is interesting that the sec-
ond non-uniqueness problem is explicitly recognized even in a setting with discounting.67

Thus, our comparison of the two geometries, Euclidean versus Cartesian, naturally leads
to two questions: first, to provide a (global) characterization of optimal programmes in a
two-sector model with Leontief production functions in an undiscounted case; and second,
in a converse move now clearly seen as pertaining only to the discounted setting, to extend
the validity of the anti-turnpike theorem to the unimodal, but only partly expansive, func-
tions delineated here. The first problem is one where “cones of diversification” are given
fuller play, and is tackled in Fujio (2004); the second is left open for future work.68

Appendix

The theorem presented below relies on results in Khan and Mitra (2003) on the existence
of an optimal programme in the RSS model. These results apply the methods of Brock
(1970). The reader should note from the discussion in Section 4 that the standing hypo-
theses in (Khan and Mitra (2003), Condition (1)) is automatically fulfilled in the one type
machine case that we are considering here.

Theorem 1: For any arbitrary initial stock, x0 ≥ 0, there exists an optimal programme from
x0. If the initial stock x0 equals the golden rule stock X = y = 1/(1 + da), then the stationary
programme {X, y} is an optimal programme from x0. Finally, if ξ ≠ 1 in the interval (−1, ∞),
a programme that uniquely minimizes the aggregate value loss of all programmes starting
from x0 is the unique optimal programme.

Before a proof of the theorem, we shall need the following lemma.

Lemma 1: For all ξ ≠ 1 in the interval (−1, ∞), every good programme converges to the
golden rule stock.

Proof: From Proposition 8 in Khan and Mitra (2003) we know that any good programme
converges to the von Neumann facet, and from the proof of Proposition 11 in Khan and
Mitra (2003) that it converges to the golden rule stock in the case −1 < ξ < 1. For the case,
ξ  > 1, we leave it to the reader to construct a proof based on Figure 15a.

We can now provide a proof.

67 Nishimura and Yano write, “Because we deal with Leontief production functions, it might appear easier
to handle the present model. . . . However, [this] creates an extra difficulty.”

68 Subsequent to this paper, in Khan and Mitra (2005), the authors provide algebraic validation of these
results through alternative mathematical techniques.
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Proof of Theorem 1: The first two claims follow from Theorem 2 in Khan and Mitra
(2003). We turn to a proof of the third claim. Let the programme {x(t), y(t)} with x(0) = x0

be such that its associated value loss sequence {δ (t)} has the unique minimum aggregate
among all programmes starting from x0. Since Proposition 2 in Khan and Mitra (2003)
guarantees that there exists a good programme from any initial stock x0, certainly {x(t),
y(t)} is a good programme.

Let {x′(t), y′(t)} be another programme starting from x0 that is optimal and has an asso-
ciated value loss sequence {δ′(t)}. From Proposition 10 in Khan and Mitra (2003), we
know that {x′(t), y′(t)} is a good programme.

We now appeal to Proposition 6 in Khan and Mitra (2003) to assert that for all positive
integers T,

By hypothesis, there exists 2ε > 0 and a positive integer T1 such that for all T > T1,
 Furthermore, since {x(t), y(t)} and {x′(t), y′(t)} are both good

programmes, we can appeal to Lemma 1 to assert the existence of a positive integer T2

such that for all T > T2, p(x′(T + 1) − x(T + 1)) > −ε. Putting these assertions together, we
can conclude that

a contradiction to the optimality of the programme {x′(t), y′(t)}. The proof is complete.

Final version accepted 16 June 2005.
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